Effects of Atmospheric Cold Plasma Treatment on the Storage Quality and Chlorophyll Metabolism of Postharvest Tomato

Author:

Jia Sitong,Zhang Na,Ji Haipeng,Zhang Xiaojun,Dong Chenghu,Yu Jinze,Yan Shijie,Chen Cunkun,Liang Liya

Abstract

Atmospheric cold plasma (ACP) is a potential green preservation technology, but its preservation mechanism is still unclear, and the effects of different plasma intensities on postharvest tomatoes are little studied. In this study, the effects of different ACP treatments (0 kV, 40 kV, 60 kV, and 80 kV) on the sensory quality, physiological indexes, key enzyme activities, and gene expression related to the chlorophyll metabolism of postharvest tomatoes were investigated during the storage time. The results showed that compared with the control group, the tomatoes in the plasma treatment group had a higher hardness and total soluble solid (TSS) and titratable acid (TA) contents, a lower respiratory intensity and weight loss rate, a higher brightness, and a lower red transformation rate, especially in the 60 kV treatment group. In addition, chlorophyll degradation, carotenoid accumulation, and chlorophyllase and pheophorbide a mono-oxygenase (PAO) enzyme activities in the postharvest tomatoes were inhibited in the 60 kV treatment group, and the expressions of three key genes related to chlorophyll metabolism, chlorophyll (CLH1), pheophytinase (PPH), and red chlorophyll catabolic reductase (RCCR) were down-regulated. The results of the correlation analysis also confirmed that the enzyme activity and gene expression of the chlorophyll metabolism were regulated by the ACP treatment, aiming to maintain the greenness of postharvest tomatoes.

Funder

National Key R&D Program of China

Major Program of Tianjin Municipal Natural Science Foundation

Innovation Team of the Tianjin Forestry & Pomology Research System

Innovative research and experimental projects for young researchers

Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3