Author:
Jia Sitong,Zhang Na,Ji Haipeng,Zhang Xiaojun,Dong Chenghu,Yu Jinze,Yan Shijie,Chen Cunkun,Liang Liya
Abstract
Atmospheric cold plasma (ACP) is a potential green preservation technology, but its preservation mechanism is still unclear, and the effects of different plasma intensities on postharvest tomatoes are little studied. In this study, the effects of different ACP treatments (0 kV, 40 kV, 60 kV, and 80 kV) on the sensory quality, physiological indexes, key enzyme activities, and gene expression related to the chlorophyll metabolism of postharvest tomatoes were investigated during the storage time. The results showed that compared with the control group, the tomatoes in the plasma treatment group had a higher hardness and total soluble solid (TSS) and titratable acid (TA) contents, a lower respiratory intensity and weight loss rate, a higher brightness, and a lower red transformation rate, especially in the 60 kV treatment group. In addition, chlorophyll degradation, carotenoid accumulation, and chlorophyllase and pheophorbide a mono-oxygenase (PAO) enzyme activities in the postharvest tomatoes were inhibited in the 60 kV treatment group, and the expressions of three key genes related to chlorophyll metabolism, chlorophyll (CLH1), pheophytinase (PPH), and red chlorophyll catabolic reductase (RCCR) were down-regulated. The results of the correlation analysis also confirmed that the enzyme activity and gene expression of the chlorophyll metabolism were regulated by the ACP treatment, aiming to maintain the greenness of postharvest tomatoes.
Funder
National Key R&D Program of China
Major Program of Tianjin Municipal Natural Science Foundation
Innovation Team of the Tianjin Forestry & Pomology Research System
Innovative research and experimental projects for young researchers
Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science