Indoor Traveling Salesman Problem (ITSP) Path Planning

Author:

Yan JinjinORCID,Zlatanova SisiORCID,Lee Jinwoo (Brian)ORCID,Liu Qingxiang

Abstract

With the growing complexity of indoor living environments, people have an increasing demand for indoor navigation. Currently, navigation path options in indoor are monotonous as existing navigation systems commonly offer single-source shortest-distance or fastest paths. Such path options might be not always attractive. For instance, pedestrians in a shopping mall may be interested in a path that navigates through multiple places starting from and ending at the same location. Here, we name it as the indoor traveling salesman problem (ITSP) path. As its name implies, this path type is similar to the classical outdoor traveling salesman problem (TSP), namely, the shortest path that visits a number of places exactly once and returns to the original departure place. This paper presents a general solution to the ITSP path based on Dijkstra and branch and bound (B&B) algorithm. We demonstrate and validate the method by applying it to path planning in a large shopping mall with six floors, in which the QR (Quick Response) codes are assumed to be utilized as the indoor positioning approach. The results show that the presented solution can successfully compute the ITSP paths and their potentials to apply to other indoor navigation applications at museums or hospitals.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference50 articles.

1. Indoor positioning and wayfinding systems: A survey;Jayakanth;Hum.-Centric Comput. Inf. Sci.,2020

2. Top-Bounded Spaces Formed by the Built Environment for Navigation Systems

3. Navigation for Indoor Location Based On QR Codes and Google Maps—A Survey;Ambareesh;Int. J. Innov. Res. Inf. Secur.,2017

4. Indoor Human Navigation Systems: A Survey;Fallah;Interact. Comput.,2013

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3