Machine Learning-Assisted Dynamic Proximity-Driven Sorting Algorithm for Supermarket Navigation Optimization: A Simulation-Based Validation

Author:

Abella Vincent1,Initan Johnfil1,Perez Jake Mark1,Astillo Philip Virgil1ORCID,Cañete Luis Gerardo1ORCID,Choudhary Gaurav2ORCID

Affiliation:

1. Department of Computer Engineering, University of San Carlos, Cebu 6000, Philippines

2. Center for Industrial Software, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, 6400 Sonderborg, Denmark

Abstract

In-store grocery shopping is still widely preferred by consumers despite the rising popularity of online grocery shopping. Moreover, hardware-based in-store navigation systems and shopping list applications such as Walmart’s Store Map, Kroger’s Kroger Edge, and Amazon Go have been developed by supermarkets to address the inefficiencies in shopping. But even so, the current systems’ cost-effectiveness, optimization capability, and scalability are still an issue. In order to address the existing problems, this study investigates the optimization of grocery shopping by proposing a proximity-driven dynamic sorting algorithm with the assistance of machine learning. This research method provides us with an analysis of the impact and effectiveness of the two machine learning models or ML-DProSA variants—agglomerative hierarchical and affinity propagation clustering algorithms—in different setups and configurations on the performance of the grocery shoppers in a simulation environment patterned from the actual supermarket. The unique shopping patterns of a grocery shopper and the proximity of items based on timestamps are utilized in sorting grocery items, consequently reducing the distance traveled. Our findings reveal that both algorithms reduce dwell times for grocery shoppers compared to having an unsorted grocery shopping list. Ultimately, this research with the ML-DProSA’s optimization capabilities aims to be the foundation in providing a mobile application for grocery shopping in any grocery stores.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3