A Water Shortage Risk Assessment Model Based on Kernel Density Estimation and Copulas

Author:

Qian Tanghui1ORCID,Shi Zhengtao1,Gu Shixiang2ORCID,Xi Wenfei1,Chen Jing2,Chen Jinming2,Bai Shihan2,Wu Lei2

Affiliation:

1. Faculty of Geography, Yunnan Normal University, Kunming 650500, China

2. Yunnan Provincial Institute of Water Resources and Hydroelectric Survey & Design & Research, Kunming 650500, China

Abstract

Accurate assessment and prediction of water shortage risk are essential prerequisites for the rational allocation and risk management of water resources. However, previous water shortage risk assessment models based on copulas have strict requirements for data distribution, making them unsuitable for extreme conditions such as insufficient data volume and indeterminate distribution shapes. These limitations restrict the applicability of the models and result in lower evaluation accuracy. To address these issues, this paper proposes a water shortage risk assessment model based on kernel density estimation (KDE) and copula functions. This approach not only enhances the robustness and stability of the model but also improves its prediction accuracy. The methodology involves initially utilizing kernel density estimation to quantify the random uncertainties in water supply and demand based on historical statistical data, thereby calculating their respective marginal probability distributions. Subsequently, copula functions are employed to quantify the coupled interdependence between water supply and demand based on these marginal probability distributions, thereby computing the joint probability distribution. Ultimately, the water shortage risk is evaluated based on potential loss rates and occurrence probabilities. This proposed model is applied to assess the water shortage risk of the Yuxi water receiving area in the Central Yunnan Water Diversion Project, and compared with existing models through experimental contrasts. The experimental results demonstrate that the model exhibits evident advantages in terms of robustness, stability, and evaluation accuracy, with a rejection rate of 0 for the null hypothesis of edge probability fitting and a smaller deviation in joint probability fitting compared to the most outstanding model in the field. These findings indicate that the model presented in this paper is capable of adapting to non-ideal scenarios and extreme climatic conditions for water shortage risk assessment, providing reliable prediction outcomes even under extreme circumstances. Therefore, it can serve as a valuable reference and source of inspiration for related engineering applications and technical research.

Funder

High-resolution Comprehensive Application Demonstration for the Central Yunnan Water Di-version Project

Publisher

MDPI AG

Reference82 articles.

1. Globally observed trends in mean and extreme river flow attributed to climate change;Gudmundsson;Science,2021

2. Human contribution to more-intense precipitation extremes;Min;Nature,2011

3. Risk assessment in water resources planning under climate change at the Júcar River basin;Sara;Hydrol. Earth Syst. Sci.,2020

4. UNCCD (2023). Global Drought Snapshot 2023: The Need for Proactive Action, United Nations.

5. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis;Maryam;Environ. Int.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3