Affiliation:
1. Hainan Province Water Conservancy & Hydropower Survey, Design & Research Institute Co., Ltd., Haikou 571100, China
2. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
Abstract
Food security is a major challenge for China at present and will be in the future. Revealing the spatiotemporal changes in cropland and identifying their driving forces would be helpful for decision-making to maintain grain supply and sustainable development. Hainan Island is endowed with rich agricultural resources due to its unique climatic conditions and is facing tremendous pressure in cropland protection due to the huge variation in natural conditions and human activities over the past few decades. The purpose of this study is to assess the spatiotemporal changes in and driving forces of cropland on Hainan Island in the past and predict future cropland changes under different scenarios. Key findings are as follows: (1) From 2000 to 2020, the cropland area on Hainan Island decreased by 956.22 km2, causing the center of cropland to shift southwestward by 8.20 km. This reduction mainly transformed into construction land and woodland, particularly evident in coastal areas. (2) Among anthropogenic factors, the increase in the human footprint is the primary reason for the decrease in cropland. Land use changes driven by population growth, especially in economically active and densely populated coastal areas, are key factors in this decrease. Natural factors such as topography and climate change also significantly impact cropland changes. (3) Future scenarios show significant differences in cropland area changes. In the natural development scenario, the cropland area is expected to continue decreasing to 597 km2, while in the ecological protection scenario, cropland conversion is restricted to 269.11 km2; however, in the cropland protection scenario, the trend of cropland reduction is reversed, increasing by 448.75 km2. Our findings provide a deep understanding of the driving forces behind cropland changes and, through future scenario analysis, demonstrate the potential changes in cropland area under different policy choices. These insights are crucial for formulating sound land management and agricultural policies to protect cropland resources, maintain food security, and promote ecological balance.
Funder
Hainan Province Science and Technology Special Fund