Comparison of Thermal Energy Saving Potential and Overheating Risk of Four Adaptive Façade Technologies in Office Buildings

Author:

Attia ShadyORCID,Bertrand Stéphanie,Cuchet Mathilde,Yang SiliangORCID,Tabadkani AmirORCID

Abstract

Adaptive façades are gaining greater importance in highly efficient buildings under a warming climate. There is an increasing demand for adaptive façades designed to regulate solar and thermal gains/losses, as well as avoid discomfort and glare issues. Occupants and developers of office buildings ask for a healthy and energy-neutral working environment. Adaptive façades are appropriate dynamic solutions controlled automatically or through occupant interaction. However, relatively few studies compared their energy and overheating risk performance, and there is still a vast knowledge gap on occupant behavior in operation. Therefore, we chose to study four dynamic envelopes representing four different façade families: dynamic shading, electrochromic glazing, double-skin, and active ventilative façades. Three control strategies were chosen to study the dynamic aspect of solar control, operative temperature, and glare control. Simulations were realized with EnergyPlus on the BESTEST case 600 from the ASHRAE standard 140/2020 for the temperate climate of Brussels. A sensitivity analysis was conducted to study the most influential parameters. The study findings indicate that dynamic shading devices and electrochromic glazing have a remarkable influence on the annual thermal energy demand, decreasing the total annual loads that can reach 30%. On the other hand, BIPV double-skin façades and active ventilative façades (cavity façades) could be more appropriate for cold climates. The study ranks the four façade technologies and provides novel insights for façade designers and building owners regarding the annual energy performance and overheating risk.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3