Short-Term Load Forecasting Based on Outlier Correction, Decomposition, and Ensemble Reinforcement Learning

Author:

Wang Jiakang1,Liu Hui1,Zheng Guangji1,Li Ye1ORCID,Yin Shi1

Affiliation:

1. Institute of Artificial Intelligence & Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China

Abstract

Short-term load forecasting is critical to ensuring the safe and stable operation of the power system. To this end, this study proposes a load power prediction model that utilizes outlier correction, decomposition, and ensemble reinforcement learning. The novelty of this study is as follows: firstly, the Hampel identifier (HI) is employed to correct outliers in the original data; secondly, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used to extract the waveform characteristics of the data fully; and, finally, the temporal convolutional network, extreme learning machine, and gate recurrent unit are selected as the basic learners for forecasting load power data. An ensemble reinforcement learning algorithm based on Q-learning was adopted to generate optimal ensemble weights, and the predictive results of the three basic learners are combined. The experimental results of the models for three real load power datasets show that: (a) the utilization of HI improves the model’s forecasting result; (b) CEEMDAN is superior to other decomposition algorithms in forecasting performance; and (c) the proposed ensemble method, based on the Q-learning algorithm, outperforms three single models in accuracy, and achieves smaller prediction errors.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3