A Stochastic Load Forecasting Approach to Prevent Transformer Failures and Power Quality Issues Amid the Evolving Electrical Demands Facing Utilities
Author:
Affiliation:
1. DTE Electric, Detroit, MI 48226, USA
2. Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA
Abstract
Publisher
MDPI AG
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Link
https://www.mdpi.com/1996-1073/16/21/7251/pdf
Reference51 articles.
1. O’Donnell, J., and Su, W. (2023). Attention-Focused Machine Learning Method to Provide the Stochastic Load Forecasts Needed by Electric Utilities for the Evolving Electrical Distribution System. Energies, 16.
2. Short-Term Electricity Load Forecasting—A Systematic Approach from System Level to Secondary Substations;Pinheiro;Appl. Energy,2023
3. On Short-Term Load Forecasting Using Machine Learning Techniques and a Novel Parallel Deep LSTM-CNN Approach;Farsi;IEEE Access,2021
4. L’Heureux, A., Grolinger, K., and Capretz, M.A.M. (2022). Transformer-Based Model for Electrical Load Forecasting. Energies, 15.
5. Agarwal, K., Dheekollu, L., Dhama, G., Arora, A., Asthana, S., and Bhowmik, T. (2020, January 14–17). Deep Learning Based Time Series Forecasting. Proceedings of the 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE, Miami, FL, USA.
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3