Affiliation:
1. School of Electrical Engineering, Guangxi University, Nanning 530004, China
2. School of Traffic &Transportation, Nanning University, Nanning 530200, China
Abstract
Accurate short-term load forecasting is of great significance to the safe and stable operation of power systems and the development of the power market. Most existing studies apply deep learning models to make predictions considering only one feature or temporal relationship in load time series. Therefore, to obtain an accurate and reliable prediction result, a hybrid prediction model combining a dual-stage attention mechanism (DA), crisscross grey wolf optimizer (CS-GWO) and bidirectional gated recurrent unit (BiGRU) is proposed in this paper. DA is introduced on the input side of the model to improve the sensitivity of the model to key features and information at key time points simultaneously. CS-GWO is formed by combining the horizontal and vertical crossover operators, to enhance the global search ability and the diversity of the population of GWO. Meanwhile, BiGRU is optimized by CS-GWO to accelerate the convergence of the model. Finally, a collected load dataset, four evaluation metrics and parametric and non-parametric testing manners are used to evaluate the proposed CS-GWO-DA-BiGRU short-term load prediction model. The experimental results show that the RMSE, MAE and SMAPE are reduced respectively by 3.86%, 1.37% and 0.30% of those of the second-best performing CSO-DA-BiGRU model, which demonstrates that the proposed model can better fit the load data and achieve better prediction results.
Funder
National Natural Science Foundation of China
Guangxi Natural Science Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献