A Short-Term Load Forecasting Model Based on Crisscross Grey Wolf Optimizer and Dual-Stage Attention Mechanism

Author:

Gong Renxi12,Li Xianglong1

Affiliation:

1. School of Electrical Engineering, Guangxi University, Nanning 530004, China

2. School of Traffic &Transportation, Nanning University, Nanning 530200, China

Abstract

Accurate short-term load forecasting is of great significance to the safe and stable operation of power systems and the development of the power market. Most existing studies apply deep learning models to make predictions considering only one feature or temporal relationship in load time series. Therefore, to obtain an accurate and reliable prediction result, a hybrid prediction model combining a dual-stage attention mechanism (DA), crisscross grey wolf optimizer (CS-GWO) and bidirectional gated recurrent unit (BiGRU) is proposed in this paper. DA is introduced on the input side of the model to improve the sensitivity of the model to key features and information at key time points simultaneously. CS-GWO is formed by combining the horizontal and vertical crossover operators, to enhance the global search ability and the diversity of the population of GWO. Meanwhile, BiGRU is optimized by CS-GWO to accelerate the convergence of the model. Finally, a collected load dataset, four evaluation metrics and parametric and non-parametric testing manners are used to evaluate the proposed CS-GWO-DA-BiGRU short-term load prediction model. The experimental results show that the RMSE, MAE and SMAPE are reduced respectively by 3.86%, 1.37% and 0.30% of those of the second-best performing CSO-DA-BiGRU model, which demonstrates that the proposed model can better fit the load data and achieve better prediction results.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3