Estimation of Cotton Nitrogen Content Based on Multi-Angle Hyperspectral Data and Machine Learning Models

Author:

Zhou Xiaoting1,Yang Mi1,Chen Xiangyu1,Ma Lulu1,Yin Caixia1,Qin Shizhe1,Wang Lu1,Lv Xin1,Zhang Ze1ORCID

Affiliation:

1. Xinjiang Production and Construction Crops Oasis Eco-Agriculture Key Laboratory, College of Agriculture, Shihezi University, Shihezi 832003, China

Abstract

For crop growth monitoring and agricultural management, it is important to use hyperspectral remote sensing techniques to estimate canopy nitrogen content in a timely and accurate manner. The traditional nadir method has limited ability to assess the nitrogen trophic state of cotton shoots, which is not conducive to high-precision nitrogen inversion, whereas the multi-angle remote sensing monitoring method can effectively extract the canopy’s physicochemical information. However, multi-angle spectral information is affected by a variety of factors, which frequently causes shifts in the band associated with nitrogen uptake, and lowers the estimation accuracy. The capacity of the spectral index to estimate aerial nitrogen concentration (ANC) in cotton was therefore investigated in this work under various observation zenith angles (VZAs), and the Relief−F method was employed to select the best spectral band with weight for ANC that is insensitive to VZA. Therefore, in this study, the ability of the spectral index to estimate ANC in cotton was explored under different VZAs, and the Relief-F algorithm was used to optimize the optimal spectral band with weight for ANC that is insensitive to VZA. The angle insensitive nitrogen index (AINI) for various VZAs was calculated using the expression (R530 − R704)/(R1412 + R704). The results show that the correlation between the spectral index and the ANC chosen in this study is stronger than the correlation between off-nadir observations, and the correlation coefficients between Photochemical Reflectance Index (PRI), AINI, and ANC are highest when VZA is −20° and −50° (r = 0.866 and 0.893, respectively). Compared with the traditional vegetation index, AINI had the best correlation with ANC under different VZAs (r > 0.84), and the performance of ANC in the backscatter direction was estimated to be better than that in the forward-scatter direction. At the same time, the ANC estimation model of the optimal indices AINI and PRI was combined with the machine learning method to achieve better accuracy, and the prediction accuracy of the random forest (RF) model was R2 = 0.98 and RMSE = 0.590. This study shows that the AINI index can estimate cotton ANC under different VZAs. Simultaneously, the backscattered direction is revealed to be more conducive to cotton ANC estimation. The findings encourage the use of multi-angle observations in crop nutrient estimation, which will also help to improve the use of ground-based and satellite sensors.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

“Strong Youth” Scientific and Technological Innovation Backbone Talent Plan of Xinjiang Production and Construction Corps

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3