Combining features selection strategy and features fusion strategy for SPAD estimation of winter wheat based on UAV multispectral imagery

Author:

Su Xiangxiang,Nian Ying,Shaghaleh Hiba,Hamad Amar,Yue Hu,Zhu Yongji,Li Jun,Wang Weiqiang,Wang Hong,Ma Qiang,Liu Jikai,Li Xinwei,Alhaj Hamoud Yousef

Abstract

The Soil Plant Analysis Development (SPAD) is a vital index for evaluating crop nutritional status and serves as an essential parameter characterizing the reproductive growth status of winter wheat. Non-destructive and accurate monitorin3g of winter wheat SPAD plays a crucial role in guiding precise management of crop nutrition. In recent years, the spectral saturation problem occurring in the later stage of crop growth has become a major factor restricting the accuracy of SPAD estimation. Therefore, the purpose of this study is to use features selection strategy to optimize sensitive remote sensing information, combined with features fusion strategy to integrate multiple characteristic features, in order to improve the accuracy of estimating wheat SPAD. This study conducted field experiments of winter wheat with different varieties and nitrogen treatments, utilized UAV multispectral sensors to obtain canopy images of winter wheat during the heading, flowering, and late filling stages, extracted spectral features and texture features from multispectral images, and employed features selection strategy (Boruta and Recursive Feature Elimination) to prioritize sensitive remote sensing features. The features fusion strategy and the Support Vector Machine Regression algorithm are applied to construct the SPAD estimation model for winter wheat. The results showed that the spectral features of NIR band combined with other bands can fully capture the spectral differences of winter wheat SPAD during the reproductive growth stage, and texture features of the red and NIR band are more sensitive to SPAD. During the heading, flowering, and late filling stages, the stability and estimation accuracy of the SPAD model constructed using both features selection strategy and features fusion strategy are superior to models using only a single feature strategy or no strategy. The enhancement of model accuracy by this method becomes more significant, with the greatest improvement observed during the late filling stage, with R2 increasing by 0.092-0.202, root mean squared error (RMSE) decreasing by 0.076-4.916, and ratio of performance to deviation (RPD) increasing by 0.237-0.960. In conclusion, this method has excellent application potential in estimating SPAD during the later stages of crop growth, providing theoretical basis and technical support for precision nutrient management of field crops.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3