Integration of Unmanned Aerial Vehicle Spectral and Textural Features for Accurate Above-Ground Biomass Estimation in Cotton

Author:

Chen Maoguang1,Yin Caixia1,Lin Tao23,Liu Haijun1,Wang Zhenyang1,Jiang Pingan1,Ali Saif4ORCID,Tang Qiuxiang1,Jin Xiuliang5ORCID

Affiliation:

1. College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China

2. Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China

3. Key Laboratory of Crop Physiology, Ecology and Farming in Desert Oasis, Agricultural Village Department, Urumqi 830091, China

4. Centre for Agriculture and Bioscience International (CABI), Rawalpindi 467000, Pakistan

5. Key Laboratory of Crop Phyiology and Ecology, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China

Abstract

Timely and accurate estimation of Above-Ground-Biomass (AGB) in cotton is essential for precise production monitoring. The study was conducted in Shaya County, Aksu Region, Xinjiang, China. It employed an unmanned aerial vehicle (UAV) as a low-altitude monitoring platform to capture multispectral images of the cotton canopy. Subsequently, spectral features and textural features were extracted, and feature selection was conducted using Pearson’s correlation (P), Principal Component Analysis (PCA), Multivariate Stepwise Regression (MSR), and the ReliefF algorithm (RfF), combined with the machine learning algorithm to construct an estimation model of cotton AGB. The results indicate a high consistency between the mean (MEA) and the corresponding spectral bands in textural features with the AGB correlation. Moreover, spectral and textural feature fusion proved to be more stable than models utilizing single spectral features or textural features alone. Both the RfF algorithm and ANN model demonstrated optimization effects on features, and their combination effectively reduced the data redundancy while improving the model performance. The RfF-ANN-AGB model constructed based on the spectral and textural features fusion worked better, and using the features SIPI2, RESR, G_COR, and RE_DIS, exhibited the best performance, achieving a test sets R2 of 0.86, RMSE of 0.23 kg·m−2, MAE of 0.16 kg·m−2, and nRMSE of 0.39. The findings offer a comprehensive modeling strategy for the precise and rapid estimation of cotton AGB.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3