Author:
Changpetch Pannapa,Pitpeng Apasiri,Hiriote Sasiprapa,Yuangyai Chumpol
Abstract
In this study, we designed a framework in which three techniques—classification tree, association rules analysis (ASA), and the naïve Bayes classifier—were combined to improve the performance of the latter. A classification tree was used to discretize quantitative predictors into categories and ASA was used to generate interactions in a fully realized way, as discretized variables and interactions are key to improving the classification accuracy of the naïve Bayes classifier. We applied our methodology to three medical datasets to demonstrate the efficacy of the proposed method. The results showed that our methodology outperformed the existing techniques for all the illustrated datasets. Although our focus here was on medical datasets, our proposed methodology is equally applicable to datasets in many other areas.
Subject
Applied Mathematics,Modelling and Simulation,General Computer Science,Theoretical Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献