Detection of Diabetes through Microarray Genes with Enhancement of Classifiers Performance

Author:

Chellappan Dinesh1ORCID,Rajaguru Harikumar2ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Coimbatore 641 407, Tamil Nadu, India

2. Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Tamil Nadu, India

Abstract

Diabetes is a life-threatening, non-communicable disease. Diabetes mellitus is a prevalent chronic disease with a significant global impact. The timely detection of diabetes in patients is necessary for an effective treatment. The primary objective of this study is to propose a novel approach for identifying type II diabetes mellitus using microarray gene data. Specifically, our research focuses on the performance enhancement of methods for detecting diabetes. Four different Dimensionality Reduction techniques, Detrend Fluctuation Analysis (DFA), the Chi-square probability density function (Chi2pdf), the Firefly algorithm, and Cuckoo Search, are used to reduce high dimensional data. Metaheuristic algorithms like Particle Swarm Optimization (PSO) and Harmonic Search (HS) are used for feature selection. Seven classifiers, Non-Linear Regression (NLR), Linear Regression (LR), Logistics Regression (LoR), Gaussian Mixture Model (GMM), Bayesian Linear Discriminant Classifier (BLDC), Softmax Discriminant Classifier (SDC), and Support Vector Machine—Radial Basis Function (SVM-RBF), are utilized to classify the diabetic and non-diabetic classes. The classifiers’ performances are analyzed through parameters such as accuracy, recall, precision, F1 score, error rate, Matthews Correlation Coefficient (MCC), Jaccard metric, and kappa. The SVM (RBF) classifier with the Chi2pdf Dimensionality Reduction technique with a PSO feature selection method attained a high accuracy of 91% with a Kappa of 0.7961, outperforming all of the other classifiers.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference74 articles.

1. Govindasamy. Performance and evaluation of classification data mining techniques in diabetes;Kumar;Int. J. Comput. Sci. Inf. Technol.,2015

2. Diabetes comorbidities in low-and middle-income countries: An umbrella review;Lam;J. Glob. Health,2021

3. Assessing diabetes mellitus knowledge among Syrian medical students: A cross-sectional study;Mohsen;Heliyon,2021

4. Nakrani, M.N., Wineland, R.H., and Anjum, F. (2021, August 20). Physiology, Glucose Metabolism, StatPearls, Available online: https://www.ncbi.nlm.nih.gov/books/NBK560599/.

5. WHO Diabetes—India, World Health Organization. Available online: https://www.who.int/india/health-topics/mobile-technology-for-preventing-ncds.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3