Comparison of Support Vector Machine, Naïve Bayes and Logistic Regression for Assessing the Necessity for Coronary Angiography

Author:

Golpour Parastoo,Ghayour-Mobarhan Majid,Saki AzadehORCID,Esmaily Habibollah,Taghipour Ali,Tajfard Mohammad,Ghazizadeh Hamideh,Moohebati Mohsen,Ferns Gordon A.ORCID

Abstract

(1) Background: Coronary angiography is considered to be the most reliable method for the diagnosis of cardiovascular disease. However, angiography is an invasive procedure that carries a risk of complications; hence, it would be preferable for an appropriate method to be applied to determine the necessity for angiography. The objective of this study was to compare support vector machine, naïve Bayes and logistic regressions to determine the diagnostic factors that can predict the need for coronary angiography. These models are machine learning algorithms. Machine learning is considered to be a branch of artificial intelligence. Its aims are to design and develop algorithms that allow computers to improve their performance on data analysis and decision making. The process involves the analysis of past experiences to find practical and helpful regularities and patterns, which may also be overlooked by a human. (2) Materials and Methods: This cross-sectional study was performed on 1187 candidates for angiography referred to Ghaem Hospital, Mashhad, Iran from 2011 to 2012. A logistic regression, naive Bayes and support vector machine were applied to determine whether they could predict the results of angiography. Afterwards, the sensitivity, specificity, positive and negative predictive values, AUC (area under the curve) and accuracy of all three models were computed in order to compare them. All analyses were performed using R 3.4.3 software (R Core Team; Auckland, New Zealand) with the help of other software packages including receiver operating characteristic (ROC), caret, e1071 and rminer. (3) Results: The area under the curve for logistic regression, naïve Bayes and support vector machine were similar—0.76, 0.74 and 0.75, respectively. Thus, in terms of the model parsimony and simplicity of application, the naïve Bayes model with three variables had the best performance in comparison with the logistic regression model with seven variables and support vector machine with six variables. (4) Conclusions: Gender, age and fasting blood glucose (FBG) were found to be the most important factors to predict the result of coronary angiography. The naïve Bayes model performed well using these three variables alone, and they are considered important variables for the other two models as well. According to an acceptable prediction of the models, they can be used as pragmatic, cost-effective and valuable methods that support physicians in decision making.

Funder

Mashhad University of Medical Sciences

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference18 articles.

1. Iran (Islamic Republic of),2018

2. Epidemiologic study of hospitalized cardiovascular patients in Jahrom hospitals in 2012–2013;Shahsavari;Iran. J. Cardiovasc. Nurs.,2013

3. CADICA: Diagnosis of Coronary Artery Disease Using the Imperialist Competitive Algorithm

4. The assessment of changing position on blood pressure and heart rate after angiography;Rezaei Adaryani;KAUMS J. (FEYZ),2008

5. Using machine learning algorithms in cardiovascular disease risk evaluation;Sitar-tăut;Age,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3