Abstract
Periodic nanostructures have wide applications in micro-optics, bionics, and optoelectronics. Here, a laser interference with subsequent etching technology is proposed to fabricate uniform periodic nanostructures with controllable morphologies and smooth surfaces on hard materials. One-dimensional microgratings with controllable periods (1, 2, and 3 μm) and heights, from dozens to hundreds of nanometers, and high surface smoothness are realized on GaAs by the method. The surface roughness of the periodic microstructures is significantly reduced from 120 nm to 40 nm with a subsequent inductively coupled plasma (ICP) etching. By using laser interference with angle-multiplexed exposures, two-dimensional square- and hexagonal-patterned microstructures are realized on the surface of GaAs. Compared with samples without etching, the diffraction efficiency can be significantly enhanced for samples with dry etching, due to the improvement of surface quality.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献