Assessing the Control of Postharvest Gray Mold Disease on Tomato Fruit Using Mixtures of Essential Oils and Their Respective Hydrolates

Author:

Brito Conny,Hansen Henrik,Espinoza LuisORCID,Faúndez Martín,Olea Andrés F.ORCID,Pino Sebastián,Díaz KatyORCID

Abstract

Gray mold disease, which is caused by Botrytis cinerea Pers ex. Fr., results in serious economic losses to Lycopersicum esculentum (tomato) crop productivity. In this study, we explored the possibility that mixtures of essential oils (EOs) and their respective hydrolates (HYSs) could be used to control this disease. Thus, EOs and HYSs were obtained from Origanum vulgare, Thymus vulgaris, Citrus limon, and Citrus sinensis by hydrodistillation. In vitro antifungal activities were evaluated, and EC50 values of 15.9 and 19.8 µg/mL were obtained for EOs of thyme and oregano, respectively. These activities are due mainly to volatile compounds, thymol and carvacrol. Results from in vivo assays show that although most tomatoes were infested five days after inoculation, the damage was considerably reduced by the application of an EO/HYS mixture of thyme. The disease incidence indexes of B. cinerea tomato rot, percentage and severity, measured four days after inoculation, were reduced by 70% and 76%, respectively, as compared with the inoculum control. These results suggest that a combination of HYSs and EOs enhances antifungal activity, and that optimization of relative concentrations, volumes, and the nature of the compounds, could design a formulation able to control B. cinerea inoculum on tomato fruits.

Funder

Universidad Técnica Federico Santa María

LabSun

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference53 articles.

1. Botryotinia and Botrytis Species: Taxonomy, Physiology and Pathogenicity—A Guide to the Literature;Jarvis,1977

2. Plant Hosts of Botrytis spp.;Elad,2016

3. Chemical Control and Resistance Management of Botrytis Diseases;Fillinger,2016

4. Chemical control of Botrytis and its resistance to chemical fungicides;Leroux,2004

5. Natural products: A continuing source of novel drug leads

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3