Cinnamaldehyde Inhibits Postharvest Gray Mold on Pepper Fruits via Inhibiting Fungal Growth and Triggering Fruit Defense

Author:

Yang Lifei1,Liu Xiaoli12,Lu Haiyan2,Zhang Cunzheng2ORCID,Chen Jian2,Shi Zhiqi2

Affiliation:

1. Hexian New Countryside Development Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China

2. Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

Abstract

Gray mold infected with Botrytis cinerea frequently appears on fruits and vegetables throughout the supply chain after harvest, leading to economic losses. Biological control of postharvest disease with phytochemicals is a promising approach. CA (cinnamaldehyde) is a natural phytochemical with medicinal and antimicrobial activity. This study evaluated the effect of CA in controlling B. cinerea on fresh pepper fruit. CA inhibited B. cinerea growth in vitro significantly in a dose- (0.1–0.8 mM) and time-dependent (6–48 h) manner, with an EC50 (median effective concentration) of 0.5 mM. CA induced the collapse and breakdown of the mycelia. CA induced lipid peroxidation resulting from ROS (reactive oxygen species) accumulation in mycelia, further leading to cell leakage, evidenced by increased conductivity in mycelia. CA induced mycelial glycerol accumulation, resulting in osmotic stress possibly. CA inhibited sporulation and spore germination resulting from ROS accumulation and cell death observed in spores. Spraying CA at 0.5 mM induced a defense response in fresh pepper fruits, such as the accumulation of defense metabolites (flavonoid and total phenols) and an increase in the activity of defense enzymes (PAL, phenylalanine ammonia lyase; PPO, polyphenol oxidase; POD, peroxidase). As CA is a type of environmentally friendly compound, this study provides significant data on the activity of CA in the biocontrol of postharvest gray mold in peppers.

Funder

National Key R&D Program of China

Jiangsu Agricultural Science and Technology Innovation Fund

China Agriculture Research System

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3