Preparation of Azoxystrobin-Zinc Metal–Organic Framework/Biomass Charcoal Composite Materials and Application in the Prevention and Control of Gray Mold in Tomato

Author:

Han Xiao1,Qian Yinjie1,Li Jiapeng2,Zhang Zhongkai1,Guo Jinbo1,Zhang Ning1,Liu Longyu1,Cheng Zhiqiang2,Yu Xiaobin1

Affiliation:

1. College of Plant Protection, Jilin Agricultural University, Changchun 130118, China

2. College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China

Abstract

In order to reduce the use of fungicide and ensure food safety, it is necessary to develop fungicide with low toxicity and high efficiency to reduce residues. Azoxystrobin (AZOX), which is derived from mushrooms, is an excellent choice. However, conventional AZOX release is difficult to regulate. In this paper, a pH-responsive fungicide delivery system for the preparation of AZOX by impregnation method was reported. The Zinc metal–organic framework/Biomass charcoal (ZIF-8/BC) support was first prepared, and subsequently, the AZOX-ZIF-8/BC nano fungicide was prepared by adsorption of AZOX onto ZIF-8/BC by dipping. Gray mold, caused by Botrytis cinerea, is one of the most important crop diseases worldwide. AZOX-ZIF-8/BC could respond to oxalic acid produced by Botrytis cinerea to release loaded AZOX. When pH = 4.8, it was 48.42% faster than when pH = 8.2. The loading of AZOX on ZIF-8/BC was 19.83%. In vitro and pot experiments showed that AZOX-ZIF-8/BC had significant fungicidal activity, and 300 mg/L concentration of AZOX-ZIF-8-BC could be considered as a safe and effective control of Botrytis cinerea. The above results indicated that the prepared AZOX-ZIF-8/BC not only exhibited good drug efficacy but also demonstrated pH-responsive fungicide release.

Funder

Jilin Province Science and Technology Development Project Talent Special

Jilin Province Science and Technology Development Planned Project

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3