Combined Effects of Nutrients × Water × Light on Metabolite Composition in Tomato Fruits (Solanum Lycopersicum L.)

Author:

Kim Yangmin X.,Son Suyoung,Lee Seulbi,Jung Eunsung,Lee Yejin,Sung Jwakyung,Lee Choonghwan

Abstract

Tomato cultivation in the greenhouse can be facilitated by supplemental light. We compared the combined effects of nutrients, water, and supplemental light (red) on tomato fruit quality. To do this, three different nutrient conditions were tested, i.e., (1) low N, (2) standard N, and (3) high N. Water was supplied either at −30 kPa (sufficient) or −80 kPa (limited) of soil water potential. Supplemental red LED light was turned either on or off. The metabolites from tomato fruits were profiled using non-targeted mass spectrometry (MS)-based metabolomic approaches. The lycopene content was highest in the condition of high N and limited water in the absence of supplemental light. In the absence of red lighting, the lycopene contents were greatly affected by nutrient and water conditions. Under the red lighting, the nutrient and water conditions did not play an important role in enhancing lycopene content. Lower N resulted in low amino acids. Low N was also likely to enhance some soluble carbohydrates. Interestingly, the combination of low N and red light led to a significant increase in sucrose, maltose, and flavonoids. In high N soil, red light increased a majority of amino acids, including aspartic acid and GABA, and sugars. However, it decreased most of the secondary metabolites such as phenylpropanoids, polyamines, and alkaloids. The water supply effect was minor. We demonstrated that different nutrient conditions of soil resulted in a difference in metabolic composition in tomato fruits and the effect of red light was variable depending on nutrient conditions.

Funder

Rural Development Administration

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3