Expression of Structural Flavonoid Biosynthesis Genes in Dark-Blue and White Myrtle Berries (Myrtus communis L.)

Author:

Medda Silvia,Sanchez-Ballesta Maria TeresaORCID,Romero Irene,Dessena Leonarda,Mulas MaurizioORCID

Abstract

Within the myrtle (Myrtus communis L.) species, different genotypes may produce dark-blue berries or white berries depending on the peel color upon ripening. One dark-blue cultivar and one white myrtle cultivar were used to study the molecular mechanisms underlying flavonoid biosynthesis. The relative expression levels of common (PAL, CHS, CHI, DFR and LDOX) and specific (FLS, ANR, LAR and UFGT) flavonoid genes were analyzed during fruit development by means of quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, the anthocyanin content was determined, and it showed an increase with the ripening of the berries of the dark-blue cultivar. The results showed an increased transcript abundance of PAL, CHI, DFR, LDOX and UFGT gene expression in the dark-blue cultivar compared to the white one, as well as a strong positive correlation between the changes in gene expression and anthocyanin accumulation. The transcript levels of UFGT showed sharp increases at 150 and 180 days after full blooming (DAF) in the dark-blue cultivar, which corresponded with anthocyanin accumulation. However, ripening seemed to modulate the expression of genes implicated in flavonols (i.e., FLS) and flavan-3-ols (i.e., LAR and ANR) in different manners. However, whereas FLS transcript accumulation increased at the end of the ripening period in the dark-blue cultivar, LAR and ANR gene expression decreased in both cultivars.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3