Author:
Xie Na,Guo Qiqiang,Li Huie,Yuan Gangyi,Gui Qin,Xiao Yang,Liao Mengyun,Yang Lan
Abstract
AbstractLitsea coreana Levl. var. sinensis (Allen) Yang et P. H. Huang is a popular ethnic herb and beverage plant known for its high flavonoid content, which has been linked to a variety of pharmacological benefits and crucial health-promoting impacts in humans. The progress in understanding the molecular mechanisms of flavonoid accumulation in this plant has been hindered due to the deficiency of genomic and transcriptomic resources. We utilized a combination of Illumina and Oxford Nanopore Technology (ONT) sequencing to generate a de novo hybrid transcriptome assembly. In total, 126,977 unigenes were characterized, out of which 107,977 were successfully annotated in seven public databases. Within the annotated unigenes, 3,781 were categorized into 58 transcription factor families. Furthermore, we investigated the presence of four valuable flavonoids—quercetin-3-O-β-D-galactoside, quercetin-3-O-β-D-glucoside, kaempferol-3-O-β-D-galactoside, and kaempferol-3-O-β-D-glucoside in 98 samples, using high-performance liquid chromatography. A weighted gene co-expression network analysis identified two co-expression modules, MEpink and MEturquoise, that showed strong positive correlation with flavonoid content. Within these modules, four transcription factor genes (R2R3-MYB, NAC, WD40, and ARF) and four key enzyme-encoding genes (CHI, F3H, PAL, and C4H) emerged as potential hub genes. Among them, the R2R3-MYB (LcsMYB123) as a homologous gene to AtMYB123/TT2, was speculated to play a significant role in flavonol biosynthesis based on phylogenetic analysis. Our findings provided a theoretical foundation for further research into the molecular mechanisms of flavonoid biosynthesis. Additionally, The hybrid transcriptome sequences will serve as a valuable molecular resource for the transcriptional annotation of L. coreana var. sinensis, which will contribute to the improvement of high-flavonoid materials.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献