Development of Smart and Lean Pick-and-Place System Using EfficientDet-Lite for Custom Dataset

Author:

Kee Elven1ORCID,Chong Jun Jie1ORCID,Choong Zi Jie1,Lau Michael1

Affiliation:

1. Faculty of Science, Agriculture and Engineering, SIT Building at Nanyang Polytechnic Singapore, Newcastle University in Singapore, Singapore 567739, Singapore

Abstract

Object detection for a pick-and-place system has been widely acknowledged as a significant research area in the field of computer vision. The integration of AI and machine vision with pick-and-place operations should be made affordable for Small and Medium Enterprises (SMEs) so they can leverage this technology. Therefore, the aim of this study is to develop a smart and lean pick-and-place solution for custom workpieces, which requires minimal computational resources. In this study, we evaluate the effectiveness of illumination and batch size to improve the Average Precision (AP) and detection score of an EfficientDet-Lite model. The addition of 8% optimized bright Alpha3 images results in an increase of 7.5% in AP and a 6.3% increase in F1-score as compared to the control dataset. Using a training batch size of 4, the AP is significantly improved to 66.8% as compared to a batch size of 16 at 57.4%. The detection scores are improved to 80% with a low variance of 1.65 using a uniform 135-angle lamp and 0 illumination level. The pick-and-place solution is validated using Single-Shot Detector (SSD) MobileNet V2 Feature Pyramid Network (FPN) Lite. Our experimental results clearly show that the proposed method has an increase of 5.19% in AP compared to SSD MobileNet V2 FPNLite.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3