Object Detection with Hyperparameter and Image Enhancement Optimisation for a Smart and Lean Pick-and-Place Solution

Author:

Kee Elven1ORCID,Chong Jun Jie1ORCID,Choong Zi Jie1,Lau Michael1

Affiliation:

1. Faculty of Science, Agriculture and Engineering, SIT Building at Nanyang Polytechnic Singapore, Newcastle University in Singapore, Singapore 567739, Singapore

Abstract

Pick-and-place operations are an integral part of robotic automation and smart manufacturing. By utilizing deep learning techniques on resource-constraint embedded devices, the pick-and-place operations can be made more accurate, efficient, and sustainable, compared to the high-powered computer solution. In this study, we propose a new technique for object detection on an embedded system using SSD Mobilenet V2 FPN Lite with the optimisation of the hyperparameter and image enhancement. By increasing the Red Green Blue (RGB) saturation level of the images, we gain a 7% increase in mean Average Precision (mAP) when compared to the control group and a 20% increase in mAP when compared to the COCO 2017 validation dataset. Using a Learning Rate of 0.08 with an Edge Tensor Processing Unit (TPU), we obtain high real-time detection scores of 97%. The high detection scores are important to the control algorithm, which uses the bounding box to send a signal to the collaborative robot for pick-and-place operation.

Publisher

MDPI AG

Reference39 articles.

1. (2024, January 03). Singapore Busineess Review. Available online: https://sbr.com.sg/information-technology/news/time-saving-top-benefit-ai-singaporean-businesses-zoom.

2. Lin, T.Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017, January 22–29). Focal loss for dense object detection. Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy.

3. Aamir, S.M., Ma, H., Khan MA, A., and Aaqib, M. (2024). Real-Time Object Detection in Occluded Environment with Background Cluttering Effects Using Deep Learning. arXiv.

4. Nurfirdausi, A.F., Soekirno, S., and Aminah, S. (2021, January 23–25). Implementation of Single Shot Detector (SSD) MobileNet V2 on Disabled Patient’s Hand Gesture Recognition as a Notification System. Proceedings of the 2021 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Depok, Indonesia.

5. Faster r-cnn: Towards real-time object detection with region proposal networks;Ren;Adv. Neural Inf. Process. Syst.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3