A Deep-Learning-Based Vehicle Detection Approach for Insufficient and Nighttime Illumination Conditions

Author:

Leung Ho Kwan,Chen Xiu-Zhi,Yu Chao-Wei,Liang Hong-Yi,Wu Jian-Yi,Chen Yen-LinORCID

Abstract

Most object detection models cannot achieve satisfactory performance under nighttime and other insufficient illumination conditions, which may be due to the collection of data sets and typical labeling conventions. Public data sets collected for object detection are usually photographed with sufficient ambient lighting. However, their labeling conventions typically focus on clear objects and ignore blurry and occluded objects. Consequently, the detection performance levels of traditional vehicle detection techniques are limited in nighttime environments without sufficient illumination. When objects occupy a small number of pixels and the existence of crucial features is infrequent, traditional convolutional neural networks (CNNs) may suffer from serious information loss due to the fixed number of convolutional operations. This study presents solutions for data collection and the labeling convention of nighttime data to handle various types of situations, including in-vehicle detection. Moreover, the study proposes a specifically optimized system based on the Faster region-based CNN model. The system has a processing speed of 16 frames per second for 500 × 375-pixel images, and it achieved a mean average precision (mAP) of 0.8497 in our validation segment involving urban nighttime and extremely inadequate lighting conditions. The experimental results demonstrated that our proposed methods can achieve high detection performance in various nighttime environments, such as urban nighttime conditions with insufficient illumination, and extremely dark conditions with nearly no lighting. The proposed system outperforms original methods that have an mAP value of approximately 0.2.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3