MLPs Are All You Need for Human Activity Recognition

Author:

Ojiako Kamsiriochukwu1,Farrahi Katayoun1ORCID

Affiliation:

1. School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK

Abstract

Convolution, recurrent, and attention-based deep learning techniques have produced the most recent state-of-the-art results in multiple sensor-based human activity recognition (HAR) datasets. However, these techniques have high computing costs, restricting their use in low-powered devices. Different methods have been employed to increase the efficiency of these techniques; however, this often results in worse performance. Recently, pure multi-layer perceptron (MLP) architectures have demonstrated competitive performance in vision-based tasks with lower computation costs than other deep-learning techniques. The MLP-Mixer is a pioneering pureMLP architecture that produces competitive results with state-of-the-art models in computer vision tasks. This paper shows the viability of the MLP-Mixer in sensor-based HAR. Furthermore, experiments are performed to gain insight into the Mixer modules essential for HAR, and a visual analysis of the Mixer’s weights is provided, validating the Mixer’s learning capabilities. As a result, the Mixer achieves F1 scores of 97%, 84.2%, 91.2%, and 90% on the PAMAP2, Daphnet Gait, Opportunity Gestures, and Opportunity Locomotion datasets, respectively, outperforming state-of-the-art models in all datasets except Opportunity Gestures.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3