Device Position-Independent Human Activity Recognition with Wearable Sensors Using Deep Neural Networks

Author:

Mekruksavanich Sakorn1ORCID,Jitpattanakul Anuchit23ORCID

Affiliation:

1. Department of Computer Engineering, School of Information and Communication Technology, University of Phayao, Phayao 56000, Thailand

2. Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

3. Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

Abstract

Human activity recognition (HAR) identifies people’s motions and actions in daily life. HAR research has grown with the popularity of internet-connected, wearable sensors that capture human movement data to detect activities. Recent deep learning advances have enabled more HAR research and applications using data from wearable devices. However, prior HAR research often focused on a few sensor locations on the body. Recognizing real-world activities poses challenges when device positioning is uncontrolled or initial user training data are unavailable. This research analyzes the feasibility of deep learning models for both position-dependent and position-independent HAR. We introduce an advanced residual deep learning model called Att-ResBiGRU, which excels at accurate position-dependent HAR and delivers excellent performance for position-independent HAR. We evaluate this model using three public HAR datasets: Opportunity, PAMAP2, and REALWORLD16. Comparisons are made to previously published deep learning architectures for addressing HAR challenges. The proposed Att-ResBiGRU model outperforms existing techniques in accuracy, cross-entropy loss, and F1-score across all three datasets. We assess the model using k-fold cross-validation. The Att-ResBiGRU achieves F1-scores of 86.69%, 96.23%, and 96.44% on the PAMAP2, REALWORLD16, and Opportunity datasets, surpassing state-of-the-art models across all datasets. Our experiments and analysis demonstrate the exceptional performance of the Att-ResBiGRU model for HAR applications.

Funder

Thailand Science Research and Innovation Fund

University of Phayao

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3