Crowdsourcing-Based Indoor Semantic Map Construction and Localization Using Graph Optimization

Author:

Li ChaoORCID,Chai Wennan,Yang XiaohuiORCID,Li Qingdang

Abstract

The advancement of smartphones with multiple built-in sensors facilitates the development of crowdsourcing-based indoor map construction and localization. This paper proposes a crowdsourcing-based indoor semantic map construction and localization method using graph optimization. Using waypoints, semantic landmarks, and Wi-Fi landmarks as nodes and the relevance between waypoints and landmarks (i.e., waypoint–waypoint, waypoint–semantic, waypoint–Wi-Fi, semantic–semantic, and Wi-Fi–Wi-Fi) as edges, the optimization graph is constructed. Initializing the venue map is the single-track semantic map with the highest quality, as determined by a proposed map quality evaluation function. The aligned venue and candidate maps are optimized while satisfying the constraints, with the candidate map exhibiting the highest degree of similarity to the venue map. The lightweight venue map is then updated in terms of waypoint and landmark attributes, as well as the relationship between waypoints and landmarks. To determine a pedestrian’s location on a venue map, similarities between a local map and a venue map are evaluated. Experiments conducted in an office building and shopping mall scenes demonstrate that crowdsourcing-based venue maps are superior to single-track semantic maps. Additionally, the landmark matching-based localization method can achieve a mean localization error of less than 0.5 m on the venue map, compared to 0.6 m in a single-track semantic map.

Funder

the Overseas Taishan Scholars Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3