Affiliation:
1. Communication Research Center, Harbin Institute of Technology, Harbin 150080, China
2. Chair of Media Technology, Technical University of Munich, 80333 Munich, Germany
Abstract
RGB-D sensors capture RGB images and depth images simultaneously, which makes it possible to acquire the depth information at pixel level. This paper focuses on the use of RGB-D sensors to construct a visual map which is an extended dense 3D map containing essential elements for image-based localization, such as poses of the database camera, visual features, and 3D structures of the building. Taking advantage of matched visual features and corresponding depth values, a novel local optimization algorithm is proposed to achieve point cloud registration and database camera pose estimation. Next, graph-based optimization is used to obtain the global consistency of the map. On the basis of the visual map, the image-based localization method is investigated, making use of the epipolar constraint. The performance of the visual map construction and the image-based localization are evaluated on typical indoor scenes. The simulation results show that the average position errors of the database camera and the query camera can be limited to within 0.2 meters and 0.9 meters, respectively.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献