Thermal Conductivity of Nano-Crystallized Indium-Gallium-Zinc Oxide Thin Films Determined by Differential Three-Omega Method

Author:

Khan RaufORCID,Ohtaki MichitakaORCID,Hata Satoshi,Miyazaki Koji,Hattori Reiji

Abstract

The temperature dependence thermal conductivity of the indium-gallium-zinc oxide (IGZO) thin films was investigated with the differential three-omega method for the clear demonstration of nanocrystallinity. The thin films were deposited on an alumina (α-Al2O3) substrate by direct current (DC) magnetron sputtering at different oxygen partial pressures ([PO2] = 0%, 10%, and 65%). Their thermal conductivities at room temperature were measured to be 1.65, 1.76, and 2.58 Wm−1K−1, respectively. The thermal conductivities decreased with an increase in the ambient measurement temperature. This thermal property is similar to that of crystalline materials. Electron microscopy observations revealed the presence of nanocrystals embedded in the amorphous matrix of the IGZO films. The typical size of the nanocrystals was approximately 2–5 nm with the lattice distance of about 0.24–0.26 nm. These experimental results indicate that the nanocrystalline microstructure controls the heat conduction in the IGZO films.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3