Area-Efficient Mapping of Convolutional Neural Networks to Memristor Crossbars Using Sub-Image Partitioning

Author:

Oh Seokjin1,An Jiyong1ORCID,Min Kyeong-Sik1ORCID

Affiliation:

1. School of Electrical Engineering, Kookmin University, Seoul 02707, Republic of Korea

Abstract

Memristor crossbars can be very useful for realizing edge-intelligence hardware, because the neural networks implemented by memristor crossbars can save significantly more computing energy and layout area than the conventional CMOS (complementary metal–oxide–semiconductor) digital circuits. One of the important operations used in neural networks is convolution. For performing the convolution by memristor crossbars, the full image should be partitioned into several sub-images. By doing so, each sub-image convolution can be mapped to small-size unit crossbars, of which the size should be defined as 128 × 128 or 256 × 256 to avoid the line resistance problem caused from large-size crossbars. In this paper, various convolution schemes with 3D, 2D, and 1D kernels are analyzed and compared in terms of neural network’s performance and overlapping overhead. The neural network’s simulation indicates that the 2D + 1D kernels can perform the sub-image convolution using a much smaller number of unit crossbars with less rate loss than the 3D kernels. When the CIFAR-10 dataset is tested, the mapping of sub-image convolution of 2D + 1D kernels to crossbars shows that the number of unit crossbars can be reduced almost by 90% and 95%, respectively, for 128 × 128 and 256 × 256 crossbars, compared with the 3D kernels. On the contrary, the rate loss of 2D + 1D kernels can be less than 2%. To improve the neural network’s performance more, the 2D + 1D kernels can be combined with 3D kernels in one neural network. When the normalized ratio of 2D + 1D layers is around 0.5, the neural network’s performance indicates very little rate loss compared to when the normalized ratio of 2D + 1D layers is zero. However, the number of unit crossbars for the normalized ratio = 0.5 can be reduced by half compared with that for the normalized ratio = 0.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3