Memristor–CMOS Hybrid Circuits Implementing Event-Driven Neural Networks for Dynamic Vision Sensor Camera

Author:

Yoon Rina1ORCID,Oh Seokjin1,Cho Seungmyeong1,Min Kyeong-Sik1ORCID

Affiliation:

1. School of Electrical Engineering, Kookmin University, Seoul 02707, Republic of Korea

Abstract

For processing streaming events from a Dynamic Vision Sensor camera, two types of neural networks can be considered. One are spiking neural networks, where simple spike-based computation is suitable for low-power consumption, but the discontinuity in spikes can make the training complicated in terms of hardware. The other one are digital Complementary Metal Oxide Semiconductor (CMOS)-based neural networks that can be trained directly using the normal backpropagation algorithm. However, the hardware and energy overhead can be significantly large, because all streaming events must be accumulated and converted into histogram data, which requires a large amount of memory such as SRAM. In this paper, to combine the spike-based operation with the normal backpropagation algorithm, memristor–CMOS hybrid circuits are proposed for implementing event-driven neural networks in hardware. The proposed hybrid circuits are composed of input neurons, synaptic crossbars, hidden/output neurons, and a neural network’s controller. Firstly, the input neurons perform preprocessing for the DVS camera’s events. The events are converted to histogram data using very simple memristor-based latches in the input neurons. After preprocessing the events, the converted histogram data are delivered to an ANN implemented using synaptic memristor crossbars. The memristor crossbars can perform low-power Multiply–Accumulate (MAC) calculations according to the memristor’s current–voltage relationship. The hidden and output neurons can convert the crossbar’s column currents to the output voltages according to the Rectified Linear Unit (ReLU) activation function. The neural network’s controller adjusts the MAC calculation frequency according to the workload of the event computation. Moreover, the controller can disable the MAC calculation clock automatically to minimize unnecessary power consumption. The proposed hybrid circuits have been verified by circuit simulation for several event-based datasets such as POKER-DVS and MNIST-DVS. The circuit simulation results indicate that the neural network’s performance proposed in this paper is degraded by as low as 0.5% while saving as much as 79% in power consumption for POKER-DVS. The recognition rate of the proposed scheme is lower by 0.75% compared to the conventional one, for the MNIST-DVS dataset. In spite of this little loss, the power consumption can be reduced by as much as 75% for the proposed scheme.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Reference41 articles.

1. Deep learning in spiking neural networks;Tavanaei;Neural Netw.,2019

2. A brain-inspired spiking neural network model with temporal encoding and learning;Yu;Neurocomputing,2014

3. Differentiable Spike: Rethinking Gradient-Descent for Training Spiking Neural Networks;Li;Adv. Neural Inf. Process. Syst.,2021

4. Spiking neural networks hardware implementations and challenges: A survey;Bouvier;ACM J. Emerg. Technol. Comput. Syst.,2019

5. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity;Indiveri;IEEE Trans. Neural Netw.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3