Optimization of Memristor Crossbar’s Mapping Using Lagrange Multiplier Method and Genetic Algorithm for Reducing Crossbar’s Area and Delay Time

Author:

Cho Seung-Myeong1ORCID,Yoon Rina1ORCID,Yoon Ilpyeong1,Moon Jihwan1ORCID,Oh Seokjin1,Min Kyeong-Sik1ORCID

Affiliation:

1. School of Electrical Engineering, Kookmin University, Seoul 02707, Republic of Korea

Abstract

Memristor crossbars offer promising low-power and parallel processing capabilities, making them efficient for implementing convolutional neural networks (CNNs) in terms of delay time, area, etc. However, mapping large CNN models like ResNet-18, ResNet-34, VGG-Net, etc., onto memristor crossbars is challenging due to the line resistance problem limiting crossbar size. This necessitates partitioning full-image convolution into sub-image convolution. To do so, an optimized mapping of memristor crossbars should be considered to divide full-image convolution into multiple crossbars. With limited crossbar resources, especially in edge devices, it is crucial to optimize the crossbar allocation per layer to minimize the hardware resource in term of crossbar area, delay time, and area–delay product. This paper explores three optimization scenarios: (1) optimizing total delay time under a crossbar’s area constraint, (2) optimizing total crossbar area with a crossbar’s delay time constraint, and (3) optimizing a crossbar’s area–delay-time product without constraints. The Lagrange multiplier method is employed for the constrained cases 1 and 2. For the unconstrained case 3, a genetic algorithm (GA) is used to optimize the area–delay-time product. Simulation results demonstrate that the optimization can have significant improvements over the unoptimized results. When VGG-Net is simulated, the optimization can show about 20% reduction in delay time for case 1 and 22% area reduction for case 2. Case 3 highlights the benefits of optimizing the crossbar utilization ratio for minimizing the area–delay-time product. The proposed optimization strategies can substantially enhance the neural network’s performance of memristor crossbar-based processing-in-memory architectures, especially for resource-constrained edge computing platforms.

Funder

NRF, Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3