Abstract
In this study, high-entropy alloy films, namely, AlCrTaTiZr/AlCrTaTiZr-N, were deposited on the n-type (100) silicon substrate. Then, a copper film was deposited on the high-entropy alloy films. The diffusion barrier performance of AlCrTaTiZr/AlCrTaTiZr-N for Cu/Si connect system was investigated after thermal annealing for an hour at 600 °C, 700 °C, 800 °C, and 900 °C. There were no Cu-Si intermetallic compounds generated in the Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks after annealing even at 900 °C through transmission electron microscopy (TEM) and atomic probe tomography (APT) analysis. The results indicated that AlCrTaTiZr/AlCrTaTiZr-N alloy films can prevent copper diffusion at 900 °C. The reason was investigated in this work. The amorphous structure of the AlCrTaTiZr layer has lower driving force to form intermetallic compounds; the lattice mismatch between the AlCrTaTiZr and AlCrTaTiZ-rN layers increased the diffusion distance of the Cu atoms and the difficulty of the Cu atom diffusion to the Si substrate.
Funder
the National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献