Mapping Neural Networks to FPGA-Based IoT Devices for Ultra-Low Latency Processing

Author:

Wielgosz MaciejORCID,Karwatowski Michał

Abstract

Internet of things (IoT) infrastructure, fast access to knowledge becomes critical. In some application domains, such as robotics, autonomous driving, predictive maintenance, and anomaly detection, the response time of the system is more critical to ensure Quality of Service than the quality of the answer. In this paper, we propose a methodology, a set of predefined steps to be taken in order to map the models to hardware, especially field programmable gate arrays (FPGAs), with the main focus on latency reduction. Multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) was employed along with custom scores for sparsity, bit-width of the representation and quality of the model. Furthermore, we created a framework which enables mapping of neural models to FPGAs. The proposed solution is validated using three case studies and Xilinx Zynq UltraScale+ MPSoC 285 XCZU15EG as a platform. The results show a compression ratio for quantization and pruning in different scenarios with and without retraining procedures. Using our publicly available framework, we achieved 210 ns of latency for a single processing step for a model composed of two long short-term memory (LSTM) and a single dense layer.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. A Survey of FPGA-Based Neural Network Accelerator;Guo;arXiv,2017

2. AMC: AutoML for Model Compression and Acceleration on Mobile Devices;He;arXiv,2018

3. Edge-centric Computing

4. Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding;Han;arXiv,2015

5. TensorFlow Litehttps://www.tensorflow.org/lite/

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3