Bottom-Up Short-Term Load Forecasting Considering Macro-Region and Weighting by Meteorological Region

Author:

Figueiró Iuri C.12,Abaide Alzenira R.1,Neto Nelson K.3ORCID,Silva Leonardo N. F.1ORCID,Santos Laura L. C.3

Affiliation:

1. Graduate Program in Electrical Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil

2. Campus of Santo Ângelo, Integrated Regional University of Alto Uruguai and Missões, Santo Ângelo 98802-470, Rio Grande do Sul, Brazil

3. Academic Coordination, Federal University of Santa Maria, Cachoeira do Sul 96503-205, Rio Grande do Sul, Brazil

Abstract

Activities related to the planning and operation of power systems use premise load forecasting, which is responsible for providing a load estimative for a given horizon that assists mainly in the operation of an electrical system. Hierarchical short-term load forecasting (STLF) becomes an approach used for this purpose, where the overall forecast is performed through system partition in smaller macro-regions and, soon after, is aggregated to compose a global forecast. In this context, this paper presents a bottom-up STLF approach for macro-regions. The main innovation is the Average Consumption per Meteorological Region (CERM) index, used to weigh the importance of each station meteorological (EM) in total load demand. Another index, the Variation of Load and Temperature (IVCT), based on historical temperature and demand changes, is proposed. These indexes are incorporated into an ANN model of the multi-layer perceptron type (MLP). The results showed a higher average performance of the index CERM and variable IVCT in relation to the other combinations performed, and the best results were used to compose the prediction of the MTR. Finally, the proposed model presented a Mean Absolute Percentage Error lower than 1%, presenting superior performance compared to an aggregate model for MTR, which shows the efficiency and contribution of the proposed methodology.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3