Abstract
Short-term load forecasting (STLF) is fundamental for the proper operation of power systems, as it finds its use in various basic processes. Therefore, advanced calculation techniques are needed to obtain accurate results of the consumption prediction, taking into account the numerous exogenous factors that influence the results’ precision. The purpose of this study is to integrate, additionally to the conventional factors (weather, holidays, etc.), the current aspects regarding the global COVID-19 pandemic in solving the STLF problem, using a convolutional neural network (CNN)-based model. To evaluate and validate the impact of the new variables considered in the model, the simulations are conducted using publicly available data from the Romanian power system. A comparison study is further carried out to assess the performance of the proposed model, using the multiple linear regression method and load forecasting results provided by the Romanian Transmission System Operator (TSO). In this regard, the Mean Squared Error (MSE), the Mean Absolute Error (MAE), the Mean Absolute Percentage Error (MAPE), and the Root Mean Square Error (RMSE) are used as evaluation indexes. The proposed methodology shows great potential, as the results reveal better error values compared to the TSO results, despite the limited historical data.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献