An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks

Author:

Radhoush Sepideh1ORCID,Whitaker Bradley M.1ORCID,Nehrir Hashem1

Affiliation:

1. Electrical and Computer Engineering Department, Montana State University, Bozeman, MT 59717, USA

Abstract

Distribution grids must be regularly updated to meet the global electricity demand. Some of these updates result in fundamental changes to the structure of the grid network. Some recent changes include two-way communication infrastructure, the rapid development of distributed generations (DGs) in different forms, and the installation of smart measurement tools. In addition to other changes, these lead to distribution grid modifications, allowing more advanced features. Even though these advanced technologies enhance distribution grid performance, the operation, management, and control of active distribution networks (ADNs) have become more complicated. For example, distribution system state estimation (DSSE) calculations have been introduced as a tool to estimate the performance of distribution grids. These DSSE computations are highly dependent on data obtained from measurement devices in distribution grids. However, sufficient measurement devices are not available in ADNs due to economic constraints and various configurations of distribution grids. Thus, the modeling of pseudo-measurements using conventional and machine learning techniques from historical information in distribution grids is applied to address the lack of real measurements in ADNs. Different types of measurements (real, pseudo, and virtual measurements), alongside network parameters, are fed into model-based or data-based DSSE approaches to estimate the state variables of the distribution grid. The results obtained through DSSE should be sufficiently accurate for the appropriate management and overall performance evaluation of a distribution grid in a control center. However, distribution grids are prone to different cyberattacks, which can endanger their safe operation. One particular type of cyberattack is known as a false data injection attack (FDIA) on measurement data. Attackers try to inject false data into the measurements of nodes to falsify DSSE results. The FDIA can sometimes bypass poor traditional data-detection processes. If FDIAs cannot be identified successfully, the distribution grid’s performance is degraded significantly. Currently, different machine learning applications are applied widely to model pseudo-measurements, calculate DSSE variables, and identify FDIAs on measurement data to achieve the desired distribution grid operation and performance. In this study, we present a comprehensive review investigating the use of supervised machine learning (SML) in distribution grids to enhance and improve the operation and performance of advanced distribution grids according to three perspectives: (1) pseudo-measurement generation (via short-term load forecasting); (2) DSSE calculation; and (3) FDIA detection on measurement data. This review demonstrates the importance of SML in the management of ADN operation.

Funder

US National Science Foundation

Montana State University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Addressing Data Scarcity in Solar Energy Prediction with Machine Learning and Augmentation Techniques;Energies;2024-07-09

2. Predictive Maintenance in Smart Grids with Long Short-Term Memory Networks (LSTM);2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

3. Smart Meters and their Application for Load Forecasting;2023 2nd International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE);2023-11-27

4. Bottom-Up Short-Term Load Forecasting Considering Macro-Region and Weighting by Meteorological Region;Energies;2023-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3