An Automatic Navigation System for Unmanned Surface Vehicles in Realistic Sea Environments

Author:

Sun XiaojieORCID,Wang Guofeng,Fan YunshengORCID,Mu DongdongORCID,Qiu BingbingORCID

Abstract

In recent years, unmanned surface vehicles (USVs) have received notable attention because of their many advantages in civilian and military applications. To improve the autonomy of USVs, this paper describes a complete automatic navigation system (ANS) with a path planning subsystem (PPS) and collision avoidance subsystem (CAS). The PPS based on the dynamic domain tunable fast marching square (DTFMS) method is able to build an environment model from a real electronic chart, where both static and dynamic obstacles are well represented. By adjusting the S a t u r a t i o n , the generated path can be changed according to the requirements for security and path length. Then it is used as a guidance trajectory for the CAS through a dynamic target point. In the CAS, according to finite control set model predictive control (FCS-MPC) theory, a collision avoidance control algorithm is developed to track trajectory and avoid collision based on a three-degree of freedom (DOF) planar motion model of USV. Its target point and security evaluation come from the planned path and environmental model of the PPS. Moreover, the prediction trajectory of the CAS can guide changes in the dynamic domain model of the vessel itself. Finally, the system has been tested and validated using the situations of three types of encounters in a realistic sea environment.

Funder

the Nature Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3