Testing and Analysis of Selected Navigation Parameters of the GNSS/INS System for USV Path Localization during Inland Hydrographic Surveys

Author:

Specht Mariusz1ORCID

Affiliation:

1. Department of Transport and Logistics, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland

Abstract

One of the main methods of the path localization of moving objects is positioning using Global Navigation Satellite Systems (GNSSs) in cooperation with Inertial Navigation Systems (INSs). Its basic task is to provide high availability, in particular in areas with limited access to satellite signals such as forests, tunnels or urban areas. The aim of the article is to carry out the testing and analysis of selected navigation parameters (3D position coordinates (Northing, Easting, and height) and Euler angles (pitch and roll)) of the GNSS/INS system for Unmanned Surface Vehicle (USV) path localization during inland hydrographic surveys. The research used the Ellipse-D GNSS/INS system working in the Real Time Kinematic (RTK) mode in order to determine the position of the “HydroDron” Autonomous Surface Vehicle (ASV). Measurements were conducted on four representative routes with a parallel and spiral arrangement of sounding profiles on Lake Kłodno (Poland). Based on the obtained research results, position accuracy measures of the “HydroDron” USV were determined using the Ellipse-D GNSS/INS system. Additionally, it was determined whether USV path localization using a GNSS/INS system working in the RTK mode meets the positioning requirements for inland hydrographic surveys. Research has shown that the Ellipse-D system operating in the RTK mode can be successfully used to position vessels when carrying out inland hydrographic surveys in all International Hydrographic Organization (IHO) Orders (Exclusive, Special, 1a/1b and 2) even when it does not work 100% correctly, e.g., loss of RTK corrections for an extended period of time. In an area with limited coverage of the mobile network operator (30–40% of the time the receiver operated in the differential mode), the positioning accuracy of the “HydroDron” USV using the Ellipse-D GNSS/INS system working in the RTK mode was from 0.877 m to 0.941 m for the R95(2D) measure, depending on the route travelled. Moreover, research has shown that if the Ellipse-D system performed GNSS/INS measurements using the RTK method, the pitch and roll error values amounted to approx. 0.06°, which is almost identical to that recommended by the device manufacturer. However, when working in the differential mode, the pitch and roll error values increased from 0.06° to just over 0.2°.

Funder

statutory activities of Gdynia Maritime University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3