A New Automatic Extraction Method for Glaciers on the Tibetan Plateau under Clouds, Shadows and Snow Cover

Author:

Hu Mingcheng,Zhou GuangshengORCID,Lv Xiaomin,Zhou Li,He Xiaohui,Tian Zhihui

Abstract

Accurately assessing the dynamic changes of glaciers under the background of climate warming is of great significance for taking scientific countermeasures to cope with climate change. Aiming at the difficulties of glacier identification, such as mountain and cloud shadow, cloud cover and seasonal snow cover in high altitude areas, this paper proposes a reflectivity difference index for identifying glaciers in shadow and glacial lakes and a multi-temporal minimum band ratio index for reducing the influence of snow cover. It establishes a new large-scale glacier extraction method (so-called Double RF) based on the random forest algorithm of Google Earth Engine (GEE) and applies it to the Tibetan Plateau. The verification results based on 30% sample points show that overall accuracies of the first and second classification of 96.04% and 90.75%, respectively, and Kappa coefficients of 0.92 and 0.83, respectively. Compared with the real glacier dataset, the percentage of correctly extracted glacier area of the total area of glacier dataset (PGD) was 84.07%, and the percentage of correctly extracted glacier area of the total area of extracted glacier (PGE) was 89.06%; the harmonic mean (HM) of the two was 86.49%. The extraction results were superior to the commonly used glacier extraction methods: the band ratio method based on median composite image (Median_Band) (HM = 79.47%), the band ratio method based on minimum composite image (Min_Band) (HM = 81.19%), the normalized difference snow cover index method based on median composite image (Median_NDSI) (HM = 83.48%), the normalized difference snow cover index method based on minimum composite image (Min_NDSI) (HM = 84.08%), the random forest method based on median composite image (Median_RF) (HM = 83.87%) and the random forest method based on minimum composite image (Min_RF) (HM = 85.36%). The new glacier extraction method constructed in this study could significantly improve the identification accuracy of glaciers under the influences of shadow, snow cover, cloud cover and debris. This study provides technical support for obtaining long-term glacier distribution data on the Tibetan Plateau and revealing the impact of climate warming on glaciers on the Tibetan Plateau.

Funder

the Second Tibetan Plateau Comprehensive Research Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3