Affiliation:
1. Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3. Henan Institute of Geographic Information, Zhengzhou 450003, China
4. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
Abstract
In recent decades, climate change has led to global warming, glacier melting, glacial lake outbursts, sea level rising, and more extreme weather, and has seriously affected human life. Remote sensing technology has advanced quickly, and it offers effective observation techniques for studying and monitoring glaciers. In order to clarify the stage of research development, research hotspots, research frontiers, and limitations and challenges in glacier mass balance based on remote sensing technology, we used the tools of bibliometrics and data visualization to analyze 4817 works of literature related to glacier mass balance based on remote sensing technology from 1990 to 2021 in the Web of Science database. The results showed that (1) China and the United States are the major countries in the study of glacier mass balance based on remote sensing technology. (2) The Chinese Academy of Sciences is the most productive research institution. (3) Current research hotspots focus on “Climate change”, “Inventory”, “Dynamics”, “Model”, “Retreat”, “Glacier mass balance”, “Sea level”, “Radar”, “Volume change”, “Surface velocity”, “Glacier mapping”, “Hazard”, and other keywords. (4) The current research frontiers include water storage change, artificial intelligence, High Mountain Asia (HMA), photogrammetry, debris cover, geodetic method, area change, glacier volume, classification, satellite gravimetry, grounding line retreat, risk assessment, lake outburst flood, glacier elevation change, digital elevation model, geodetic mass balance, (DEM) generation, etc. According to the results of the visual analysis of the literature, we introduced the three commonly used methods of glacier mass balance based on remote sensing observation and summarized the research status and shortcomings of different methods in glacier mass balance. We considered that the future research trend is to improve the spatial and temporal resolution of data and combine a variety of methods and data to achieve high precision and long-term monitoring of glacier mass changes and improve the consistency of results. This research summarizes the study of glacier mass balance using remote sensing, which will provide valuable information for future research across this field.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences