Estimation of Maize Yield and Flowering Time Using Multi-Temporal UAV-Based Hyperspectral Data

Author:

Fan JiahaoORCID,Zhou Jing,Wang Biwen,de Leon Natalia,Kaeppler Shawn M.,Lima Dayane C.ORCID,Zhang ZhouORCID

Abstract

Maize (Zea mays L.) is one of the most consumed grains in the world. Within the context of continuous climate change and the reduced availability of arable land, it is urgent to breed new maize varieties and screen for the desired traits, e.g., high yield and strong stress tolerance. Traditional phenotyping methods relying on manual assessment are time-consuming and prone to human errors. Recently, the application of uncrewed aerial vehicles (UAVs) has gained increasing attention in plant phenotyping due to their efficiency in data collection. Moreover, hyperspectral sensors integrated with UAVs can offer data streams with high spectral and spatial resolutions, which are valuable for estimating plant traits. In this study, we collected UAV hyperspectral imagery over a maize breeding field biweekly across the growing season, resulting in 11 data collections in total. Multiple machine learning models were developed to estimate the grain yield and flowering time of the maize breeding lines using the hyperspectral imagery. The performance of the machine learning models and the efficacy of different hyperspectral features were evaluated. The results showed that the models with the multi-temporal imagery outperformed those with imagery from single data collections, and the ridge regression using the full band reflectance achieved the best estimation accuracies, with the correlation coefficients (r) between the estimates and ground truth of 0.54 for grain yield, 0.91 for days to silking, and 0.92 for days to anthesis. In addition, we assessed the estimation performance with data acquired at different growth stages to identify the good periods for the UAV survey. The best estimation results were achieved using the data collected around the tasseling stage (VT) for the grain yield estimation and around the reproductive stages (R1 or R4) for the flowering time estimation. Our results showed that the robust phenotyping framework proposed in this study has great potential to help breeders efficiently estimate key agronomic traits at early growth stages.

Funder

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3