Deep Learning-Based Soil Nutrient Content Prediction for Crop Yield Estimation

Author:

Sharma Iti1,Kumar Nimish2,Verma Himanshu3

Affiliation:

1. Birla Institute of Technology and Science (BITS), Pilani, India

2. B K Birla Institute of Engineering and Technology, Pilani, India

3. Manipal University Jaipur, India

Abstract

This chapter proposes a deep learning-based approach for predicting soil nutrient content and its impact on crop yield. The objective is to develop an accurate model that can assist farmers in making informed decisions about nutrient management and improving crop productivity. The proposed approach employs a combination of a convolutional neural network (CNN) architecture and long short-term memory (LSTM) networks for analyzing soil samples and forecasting nutrient content. Subsequently, the trained model is harnessed to assess the influence of soil nutrient content on crop yield, taking into account factors like climate, water availability, and soil type. The approach was tested on publicly available soil nutrient and crop yield datasets of soil samples collected from different regions and crops. The findings illustrate that the suggested model surpasses conventional approaches and attains remarkable precision in forecasting soil nutrient levels and crop yield.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3