Affiliation:
1. College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
2. College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
3. Center of Information and Network Technology, Inner Mongolia Agricultural University, Hohhot 010018, China
4. Institute of Grassland Research of CAAS, Hohhot 010010, China
Abstract
In recent years, grassland monitoring has shifted from traditional field surveys to remote-sensing-based methods, but the desired level of accuracy has not yet been obtained. Multi-temporal hyperspectral data contain valuable information about species and growth season differences, making it a promising tool for grassland classification. Transformer networks can directly extract long-sequence features, which is superior to other commonly used analysis methods. This study aims to explore the transformer network’s potential in the field of multi-temporal hyperspectral data by fine-tuning it and introducing it into high-powered grassland detection tasks. Subsequently, the multi-temporal hyperspectral classification of grassland samples using the transformer network (MHCgT) is proposed. To begin, a total of 16,800 multi-temporal hyperspectral data were collected from grassland samples at different growth stages over several years using a hyperspectral imager in the wavelength range of 400–1000 nm. Second, the MHCgT network was established, with a hierarchical architecture, which generates a multi-resolution representation that is beneficial for grass hyperspectral time series’ classification. The MHCgT employs a multi-head self-attention mechanism to extract features, avoiding information loss. Finally, an ablation study of MHCgT and comparative experiments with state-of-the-art methods were conducted. The results showed that the proposed framework achieved a high accuracy rate of 98.51% in identifying grassland multi-temporal hyperspectral which outperformed CNN, LSTM-RNN, SVM, RF, and DT by 6.42–26.23%. Moreover, the average classification accuracy of each species was above 95%, and the August mature period was easier to identify than the June growth stage. Overall, the proposed MHCgT framework shows great potential for precisely identifying multi-temporal hyperspectral species and has significant applications in sustainable grassland management and species diversity assessment.
Funder
National Natural Science Foundation of China
Technological Achievements of Inner Mongolia Autonomous Region of China
Natural Science Foundation of Inner Mongolia Autonomous Region of China
Program for Innovative Research Teams in Universities of Inner Mongolia Autonomous Region
Central Public Interest Scientific Institution Basal Research Found
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献