Fire Detection and Notification Method in Ship Areas Using Deep Learning and Computer Vision Approaches

Author:

Avazov Kuldoshbay1,Jamil Muhammad Kafeel1ORCID,Muminov Bahodir2,Abdusalomov Akmalbek Bobomirzaevich1ORCID,Cho Young-Im1ORCID

Affiliation:

1. Department of Computer Engineering, Gachon University, Seongnam-si 461-701, Republic of Korea

2. Department of Artificial Intelligence, Tashkent State University of Economics, Tashkent 100066, Uzbekistan

Abstract

Fire incidents occurring onboard ships cause significant consequences that result in substantial effects. Fires on ships can have extensive and severe wide-ranging impacts on matters such as the safety of the crew, cargo, the environment, finances, reputation, etc. Therefore, timely detection of fires is essential for quick responses and powerful mitigation. The study in this research paper presents a fire detection technique based on YOLOv7 (You Only Look Once version 7), incorporating improved deep learning algorithms. The YOLOv7 architecture, with an improved E-ELAN (extended efficient layer aggregation network) as its backbone, serves as the basis of our fire detection system. Its enhanced feature fusion technique makes it superior to all its predecessors. To train the model, we collected 4622 images of various ship scenarios and performed data augmentation techniques such as rotation, horizontal and vertical flips, and scaling. Our model, through rigorous evaluation, showcases enhanced capabilities of fire recognition to improve maritime safety. The proposed strategy successfully achieves an accuracy of 93% in detecting fires to minimize catastrophic incidents. Objects having visual similarities to fire may lead to false prediction and detection by the model, but this can be controlled by expanding the dataset. However, our model can be utilized as a real-time fire detector in challenging environments and for small-object detection. Advancements in deep learning models hold the potential to enhance safety measures, and our proposed model in this paper exhibits this potential. Experimental results proved that the proposed method can be used successfully for the protection of ships and in monitoring fires in ship port areas. Finally, we compared the performance of our method with those of recently reported fire-detection approaches employing widely used performance matrices to test the fire classification results achieved.

Funder

Korea Agency for Technology and Standards

Ministry of Oceans and Fisheries

Gachon University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3