Real-Time Fire Detection: Integrating Lightweight Deep Learning Models on Drones with Edge Computing

Author:

Titu Md Fahim Shahoriar1ORCID,Pavel Mahir Afser1ORCID,Michael Goh Kah Ong2ORCID,Babar Hisham1ORCID,Aman Umama1ORCID,Khan Riasat1ORCID

Affiliation:

1. Electrical and Computer Engineering, North South University, Dhaka 1229, Bangladesh

2. Faculty of Information Science & Technology, Multimedia University, Melaka 75450, Malaysia

Abstract

Fire accidents are life-threatening catastrophes leading to losses of life, financial damage, climate change, and ecological destruction. Promptly and efficiently detecting and extinguishing fires is essential to reduce the loss of lives and damage. This study uses drone, edge computing, and artificial intelligence (AI) techniques, presenting novel methods for real-time fire detection. This proposed work utilizes a comprehensive dataset of 7187 fire images and advanced deep learning models, e.g., Detection Transformer (DETR), Detectron2, You Only Look Once YOLOv8, and Autodistill-based knowledge distillation techniques to improve the model performance. The knowledge distillation approach has been implemented with the YOLOv8m (medium) as the teacher (base) model. The distilled (student) frameworks are developed employing the YOLOv8n (Nano) and DETR techniques. The YOLOv8n attains the best performance with 95.21% detection accuracy and 0.985 F1 score. A powerful hardware setup, including a Raspberry Pi 5 microcontroller, Pi camera module 3, and a DJI F450 custom-built drone, has been constructed. The distilled YOLOv8n model has been deployed in the proposed hardware setup for real-time fire identification. The YOLOv8n model achieves 89.23% accuracy and an approximate frame rate of 8 for the conducted live experiments. Integrating deep learning techniques with drone and edge devices demonstrates the proposed system’s effectiveness and potential for practical applications in fire hazard mitigation.

Funder

North South University, Dhaka, Bangladesh

Multimedia University, Melaka, Malaysia

Postdoctoral Research Fellow Program

Publisher

MDPI AG

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3