Autonomous Unmanned Aerial Vehicles in Bushfire Management: Challenges and Opportunities

Author:

Partheepan ShouthiriORCID,Sanati FarzadORCID,Hassan JahanORCID

Abstract

The intensity and frequency of bushfires have increased significantly, destroying property and living species in recent years. Presently, unmanned aerial vehicle (UAV) technology advancements are becoming increasingly popular in bushfire management systems because of their fundamental characteristics, such as manoeuvrability, autonomy, ease of deployment, and low cost. UAVs with remote-sensing capabilities are used with artificial intelligence, machine learning, and deep-learning algorithms to detect fire regions, make predictions, make decisions, and optimize fire-monitoring tasks. Moreover, UAVs equipped with various advanced sensors, including LIDAR, visual, infrared (IR), and monocular cameras, have been used to monitor bushfires due to their potential to provide new approaches and research opportunities. This review focuses on the use of UAVs in bushfire management for fire detection, fire prediction, autonomous navigation, obstacle avoidance, and search and rescue to improve the accuracy of fire prediction and minimize their impacts on people and nature. The objective of this paper is to provide valuable information on various UAV-based bushfire management systems and machine-learning approaches to predict and effectively respond to bushfires in inaccessible areas using intelligent autonomous UAVs. This paper aims to assemble information about the use of UAVs in bushfire management and to examine the benefits and limitations of existing techniques of UAVs related to bushfire handling. However, we conclude that, despite the potential benefits of UAVs for bushfire management, there are shortcomings in accuracy, and solutions need to be optimized for effective bushfire management.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3