Early Poplar (Populus) Leaf-Based Disease Detection through Computer Vision, YOLOv8, and Contrast Stretching Technique

Author:

Bolikulov Furkat1,Abdusalomov Akmalbek12ORCID,Nasimov Rashid2ORCID,Akhmedov Farkhod1ORCID,Cho Young-Im1ORCID

Affiliation:

1. Department of Computer Engineering, Gachon University, Sujeong-Gu, Seongnam-si 461-701, Republic of Korea

2. Department of Information Systems and Technologies, Tashkent State University of Economics, Tashkent 100066, Uzbekistan

Abstract

Poplar (Populus) trees play a vital role in various industries and in environmental sustainability. They are widely used for paper production, timber, and as windbreaks, in addition to their significant contributions to carbon sequestration. Given their economic and ecological importance, effective disease management is essential. Convolutional Neural Networks (CNNs), particularly adept at processing visual information, are crucial for the accurate detection and classification of plant diseases. This study introduces a novel dataset of manually collected images of diseased poplar leaves from Uzbekistan and South Korea, enhancing the geographic diversity and application of the dataset. The disease classes consist of “Parsha (Scab)”, “Brown-spotting”, “White-Gray spotting”, and “Rust”, reflecting common afflictions in these regions. This dataset will be made publicly available to support ongoing research efforts. Employing the advanced YOLOv8 model, a state-of-the-art CNN architecture, we applied a Contrast Stretching technique prior to model training in order to enhance disease detection accuracy. This approach not only improves the model’s diagnostic capabilities but also offers a scalable tool for monitoring and treating poplar diseases, thereby supporting the health and sustainability of these critical resources. This dataset, to our knowledge, will be the first of its kind to be publicly available, offering a valuable resource for researchers and practitioners worldwide.

Funder

Korea Agency for Technology and Standards

Gachon University research fund of 2024

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3