Accuracy Assessment and Impact Factor Analysis of GEDI Leaf Area Index Product in Temperate Forest

Author:

Wang Cangjiao1ORCID,Jia Duo2,Lei Shaogang1,Numata Izaya3ORCID,Tian Luo45

Affiliation:

1. Engineering Research Center of Ministry of Education for Mine Ecological Restoration, China University of Mining and Technology, Xuzhou 221116, China

2. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

3. Geospatial Sciences Center of Excellence, South Dakota State University, 1021 Medary Ave, Wecota Hall Box 506B, Brookings, SD 57007, USA

4. State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing 100875, China

5. Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

Abstract

The leaf area index (LAI) is a vital parameter for quantifying the material and energy exchange between terrestrial ecosystems and the atmosphere. The Global Ecosystem Dynamics Investigation (GEDI), with its mission to produce a near-global map of forest structure, provides a product of the effective leaf area index (referred to as GEDI LAIe). However, it is unclear about the performance of GEDI LAIe across different temperate forest types and the degree of factors influencing GEDI LAIe performance. This study assessed the accuracy of GEDI LAIe in temperate forests and quantifies the effects of various factors, such as the difference of gap fraction (DGF) between GEDI and discrete point cloud Lidar of the National Ecological Observatory Network (NEON), sensor system parameters, and characteristics of the canopy, topography, and soil. The reference data for the LAIe assessment were derived from the NEON discrete point cloud Lidar, referred to as NEON Lidar LAIe, covering 12 forest types across 22 sites in the Continental United States (the CONUS). Results showed that GEDI underestimated LAIe (Bias: −0.56 m2/m2), with values of the mean absolute error (MAE), root mean square error (RMSE), percent bias (%Bias), and percent RMSE (%RMSE) of 0.70 m2/m2, 0.89 m2/m2, −0.20, and 0.31, respectively. Among forest types, the underestimation of GEDI LAIe in broadleaf forests and mixed forests was generally greater than that in coniferous forests, which showed a moderate error (%RMSE: 0.33~0.52). Factor analysis indicated that multiple factors explained 52% variance of the GEDI LAIe error, among which the DGF contributed the most with a relative importance of 49.82%, followed by characteristics of canopy and soil with a relative importance of 23.20% and 16.18%, respectively. The DGF was a key pivot for GEDI LAIe error; that is, other factors indirectly influence the GEDI LAIe error by affecting the DGF first. Our findings demonstrated that the GEDI LAIe product has good performance, and the factor analysis is expected to shed some light on further improvements in GEDI LAIe estimation.

Funder

the ‘Outstanding Innovation Scholarship for Doctoral Candidate of CUMT’

China Postdoctoral Science Foundation

NASA LCLUC

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3